
Lecture 2
Structure of operating systems



Introduction

• An operating system provides the environment within which
programs are executed. Internally, operating systems vary greatly
in their makeup, since they are organized along many different
lines.

• We can view an operating system from several vantage points.
One view focuses on the services that the system provides;
another, on the interface that it makes available to users and
programmers; a third, on its components and their
interconnections.





User interface

• User interface. Almost all operating systems have a user interface (UI).
This interface can take several forms. Most commonly, a graphical user
interface (GUI) is used. Here, the interface is a window system with a
mouse that serves as a pointing device to direct I/O, choose from
menus, and make selections and a keyboard to enter text.

• Mobile systems such as phones and tablets provide a touch-screen
interface, enabling users to slide their fingers across the screen or
press buttons on the screen to select choices.

• Another option is a command-line interface (CLI), which uses text
commands and a method for entering them (say, a keyboard for typing
in commands in a specific format with specific options). Some systems
provide two or all three of these variations.



Program execution

• Program execution. The system must be able to load a program
into memory and to run that program. The program must be able
to end its execution, either normally or abnormally (indicating
error).



I/O operations

• I/O operations. A running program may require I/O, which may
involve a file or an I/O device. For specific devices, special
functions may be desired (such as reading from a network
interface or writing to a file system). For efficiency and protection,
users usually cannot control I/O devices directly. Therefore, the
operating system must provide a means to do I/O.



File-system manipulation

• File-system manipulation. The file system is of particular
interest. Obviously, programs need to read and write files and
directories. They also need to create and delete them by name,
search for a given file, and list file information. Finally, some
operating systems include permissions management to allow or
deny access to files or directories based on file ownership. Many
operating systems provide a variety of file systems, sometimes to
allow personal choice and sometimes to provide specific features
or performance characteristics.



Communications

• Communications. There are many circumstances in which one
process needs to exchange information with another process.
Such communication may occur between processes that are
executing on the same computer or between processes that are
executing on different computer systems tied together by a
network. Communications may be implemented via shared
memory, in which two or more processes read and write to a
shared section of memory, or message passing, in which packets
of information in predefined formats are moved between
processes by the operating system.



Error detection

• Error detection. The operating system needs to be detecting and
correcting errors constantly. Errors may occur in the CPU and
memory hardware (such as a memory error or a power failure), in
I/O devices (such as a parity error on disk, a connection failure on
a network, or lack of paper in the printer), and in the user program
(such as an arithmetic overflow or an attempt to access an illegal
memory location). For each type of error, the operating system
should take the appropriate action to ensure correct and
consistent computing. Sometimes, it has no choice but to halt the
system. At other times, it might terminate an error-causing
process or return an error code to a process for the process to
detect and possibly correct.



Resource allocation

• Resource allocation. When there are multiple processes running
at the same time, resources must be allocated to each of them.
The operating system manages many different types of resources.
Some (such as CPU cycles, main memory, and file storage) may
have special allocation code, whereas others (such as I/O
devices) may have much more general request and release code.
For instance, in determining how best to use the CPU, operating
systems have CPU-scheduling routines that take into account the
speed of the CPU, the process that must be executed, the number
of processing cores on the CPU, and other factors. There may also
be routines to allocate printers, USB storage drives, and other
peripheral devices.



Logging

• Logging. We want to keep track of which programs use how much
and what kinds of computer resources. This record keeping may
be used for accounting (so that users can be billed) or simply for
accumulating usage statistics. Usage statistics may be a valuable
tool for system administrators who wish to reconfigure the system
to improve computing services.



Protection and security

• Protection and security. The owners of information stored in a
multiuser or networked computer system may want to control use of
that information. When several separate processes execute
concurrently, it should not be possible for one process to interfere with
the others or with the operating system itself. Protection involves
ensuring that all access to system resources is controlled. Security of
the system from outsiders is also important. Such security starts with
requiring each user to authenticate himself or herself to the system,
usually by means of a password, to gain access to system resources. It
extends to defending external I/O devices, including network adapters,
from invalid access attempts and recording all such connections for
detection of break-ins. If a system is to be protected and secure,
precautions must be instituted throughout it. A chain is only as strong
as its weakest link.



• Authentication and authorization are two 
vital information security processes that 
administrators use to protect systems 
and information. Authentication verifies 
the identity of a user or service, and 
authorization determines their access 
rights. Although the two terms sound 
alike, they play separate but equally 
essential roles in securing applications 
and data.

• authentication is the process of verifying who a 
user is, while authorization is the process of 
verifying what they have access to

Authentication Authorization

Determines whether users are 
who they claim to be

Determines what users can 
and cannot access

Challenges the user to validate 
credentials (for example, 
through passwords, answers to 
security questions, or facial 
recognition)

Verifies whether access is 
allowed through policies and 
rules

Usually done before 
authorization

Usually done after successful 
authentication

Generally, transmits info 
through an ID Token

Generally, transmits info 
through an Access Token

Generally governed by 
the OpenID Connect (OIDC) 
protocol

Generally governed by the 
OAuth 2.0 framework

Example: Employees in a 
company are required to 
authenticate through the 
network before accessing their 
company email

Example: After an employee 
successfully authenticates, 
the system determines what 
information the employees 
are allowed to access



User and Operating-System Interface

• Most operating systems, including Linux, UNIX, and Windows, 
treat the command interpreter as a special program that is 
running when a process is initiated or when a user first logs on (on 
interactive systems). On systems with multiple command 
interpreters to choose from, the interpreters are known as shells. 
For example, on UNIX and Linux systems, a user may choose 
among several different shells, including the C shell, Bourne-
Again shell, Korn shell, and others. Third-party shells and free 
user-written shells are also available. Most shells provide similar 
functionality, and a user’s choice of which shell to use is generally 
based on personal preference. Figure 2.2 shows the Bourne-Again 
(or bash) shell command interpreter being used on macOS.





• The main function of the command interpreter is to get and execute the next
user-specified command. Many of the commands given at this level
manipulate files: create, delete, list, print, copy, execute, and so on. The
various shells available on UNIX systems operate in this way. These
commands can be implemented in two general ways. In one approach, the
command interpreter itself contains the code to execute the command. For
example, a command to delete a file may cause the command interpreter to
jump to a section of its code that sets up the parameters and makes the
appropriate system call. In this case, the number of commands that can be
given determines the size of the command interpreter, since each command
requires its own implementing code. An alternative approach—used by UNIX,
among other operating systems —implements most commands through
system programs

• rm file.txt 



Graphical User Interface

• A second strategy for interfacing with the operating system is
through a user-friendly graphical user interface, or GUI. Here,
rather than entering commands directly via a command-line
interface, users employ a mouse-based window and-menu
system characterized by a desktop metaphor. The user moves the
mouse to position its pointer on images, or icons, on the screen
(the desktop) that represent programs, files, directories, and
system functions. Depending on the mouse pointer’s location,
clicking a button on the mouse can invoke a program, select a file
or directory—known as a folder—or pull down a menu that
contains commands.



Touch-Screen Interface

• Because a either a command-line interface or a mouse-and-
keyboard system is impractical for most mobile systems,
smartphones and handheld tablet computers typically use a
touch-screen interface. Here, users interact by making gestures
on the touch screen— for example, pressing and swiping fingers
across the screen. Although earlier smartphones included a
physical keyboard, most smartphones and tablets now simulate a
keyboard on the touch screen. Figure 2.3 illustrates the touch
screen of the Apple iPhone. Both the iPad and the iPhone use the
Springboard touch-screen interface.



• The choice of whether to use a command-line or
GUI interface is mostly one of personal
preference.



• In contrast, most Windows users are happy to 
use the Windows GUI environment and almost 
never use the shell interface. Recent versions 
of the Windows operating system provide both 
a standard GUI for desktop and traditional 
laptops and a touch screen for tablets. The 
various changes undergone

• by the Macintosh operating systems also 
provide a nice study in contrast. Historically, 
Mac OS has not provided a command-line 
interface, always requiring its users to 
interface with the operating system using its 
GUI. However, with the release of macOS 
(which is in part implemented using a UNIX 
kernel), the operating system now provides 
both an Aqua GUI and a command-line 
interface.

• Figure 2.4 is a screenshot of the macOS GUI. 



• Although there are apps that provide a command-line interface for 
iOS and Android mobile systems, they are rarely used. Instead, 
almost all users of mobile systems interact with their devices 
using the touch-screen interface. 



System Calls 

• System calls provide an interface to the services made available 
by an operating system. These calls are generally available as 
functions written in C and C++, although certain low-level tasks 
(for example, tasks where hardware must be accessed directly) 
may have to be written using assembly-language instructions.



Example

• Before we discuss how an operating system makes system calls
available, let’s first use an example to illustrate how system calls
are used: writing a simple program to read data from one file and
copy them to another file. The first input that the program will
need is the names of the two files: the input file and the output
file. These names can be specified in many ways, depending on
the operating-system design. One approach is to pass the names
of the two files as part of the command— for example, the UNIX
cp command:

• cp in.txt out.txt





Application Programming Interface

• As you can see, even simple programs may make heavy use of the operating system.
Frequently, systems execute thousands of system calls per second. Most
programmers never see this level of detail, however. Typically, application
developers design programs according to an application programming interface
(API).

• The API specifies a set of functions that are available to an application programmer,
including the parameters that are passed to each function and the return values the
programmer can expect. Three of the most common APIs available to application
programmers are the Windows API for Windows systems, the POSIX API for POSIX-
based systems (which include virtually all versions of UNIX, Linux, and macOS), and
the Java API for programs that run on the Java virtual machine. A programmer
accesses an API via a library of code provided by the operating system. In the case of
UNIX and Linux for programs written in the C language, the library is called libc. Note
that—unless specified — the system-call names used throughout this text are
generic examples. Each operating system has its own name for each system call.



run-time environment (RTE)

• Another important factor in handling system calls is the run-time
environment (RTE)— the full suite of software needed to execute
applications written in a given programming language, including its
compilers or interpreters as well as other software, such as libraries
and loaders.

• The RTE provides a system-call interface that serves as the link to
system calls made available by the operating system. The system-call
interface intercepts function calls in the API and invokes the necessary
system calls within the operating system. Typically, a number is
associated with each system call, and the system-call interface
maintains a table indexed according to these numbers. The system call
interface then invokes the intended system call in the operating-system
kernel and returns the status of the system call.



Types of System Calls

• System calls can be grouped roughly into six major categories:
process control, fil management, device management,
information maintenance, communications, and protection.



• Process control 
◦ create process, terminate process 
◦ load, execute 
◦ get process attributes, set process attributes 
◦ wait event, signal event 
◦ allocate and free memory 
• File management
◦ create file, delete file 
◦ open, close 
◦ read, write, reposition 
◦ get file attributes, set file attributes



• • Device management 
◦ request device, release device 
◦ read, write, reposition 
◦ get device attributes, set device attributes 
◦ logically attach or detach devices 
• Information maintenance 
◦ get time or date, set time or date
◦ get system data, set system data
◦ get process, file, or device attributes 

◦ set process, file, or device attributes 
• Communications 
◦ create, delete communication connection 
◦ send, receive messages 
◦ transfer status information 
◦ attach or detach remote devices 
• Protection
◦ get file permissions ◦ set file permissions



Communication
• There are two common models of interprocess communication: the message passing model and the

shared-memory model. In the message-passing model, the communicating processes exchange
messages with one another to transfer information. Messages can be exchanged between the
processes either directly or indirectly through a common mailbox. Before communication can take
place, a connection must be opened. The name of the other communicator must be known, be it
another process on the same system or a process on another computer connected by a
communications network. Each computer in a network has a host name by which it is commonly
known. A host also has a network identifier, such as an IP address. Similarly, each process has a
process name, and this name is translated into an identifier by which the operating system can refer to
the process. The get hostid() and get processid() system calls do this translation. The identifiers are
then passed to the generalpurpose open() and close() calls provided by the file system or to specific
open connection() and close connection() system calls, depending on the system’s model of
communication. The recipient process usually must give its permission for communication to take
place with an accept connection() call. Most processes that will be receiving connections are special-
purpose daemons, which are system programs provided for that purpose. They execute a wait for
connection() call and are awakened when a connection is made.

• The source of the communication, known as the client, and the receiving daemon, known as a server,
then exchange messages by using read message() and write message() system calls. The close
connection() call terminates the communication.



shared-memory model

• In the shared-memory model, processes use shared memory
create() and shared memory attach() system calls to create and
gain access to regions of memory owned by other processes.
Recall that, normally, the operating system tries to prevent one
process from accessing another process’s memory. Shared
memory requires that two or more processes agree to remove this
restriction. They can then exchange information by reading and
writing data in the shared areas. The form of the data is
determined by the processes and is not under the operating
system’s control. The processes are also responsible for ensuring
that they are not writing to the same location simultaneously



Protection

• Protection provides a mechanism for controlling access to the
resources provided by a computer system. Historically, protection
was a concern only on multi programmed computer systems with
several users. However, with the advent of networking and the
Internet, all computer systems, from servers to mobile handheld
devices, must be concerned with protection. Typically, system
calls providing protection include set permission() and get
permission(), which manipulate the permission settings of
resources such as files and disks. The allow user() and deny

user() system calls specify whether particular users can—or
cannot—be allowed access to certain resources



Linkers and Loaders0
• Usually, a program resides on disk as a 

binary executable file— for example, 
a.out or prog.exe. To run on a CPU, the 
program must be brought into memory 
and placed in the context of a process. In 
this section, we describe the steps in this 
procedure, from compiling a program to 
placing it in memory, where it becomes 
eligible to run on an available CPU core. 
The steps are highlighted in Figure 2.11.



• Source files are compiled into object files that are designed to be loaded into any physical 
memory location, a format known as an relocatable object fil . Next, the linker combines 
these relocatable object files into a single binary executable file. During the linking phase, 
other object files or libraries may be included as well, such as the standard C or math library 
(specified with the flag-lm).

• A loader is used to load the binary executable file into memory, where it is eligible to run on a 
CPU core. An activity associated with linking and loading is relocation, which assigns final 
addresses to the program parts and adjusts code and data in the program to match those 
addresses so that, for example, the code can call library functions and access its variables 
as it executes. In Figure 2.11, we see that to run the loader, all that is necessary is to enter 
the name of the executable file on the command line. When a program name is entered on 
the command line on UNIX systems— for example, ./main— the shell first creates a new 
process to run the program using the fork() system call. The shell then invokes the loader 
with the exec() system call, passing exec() the name of the executable file. The loader then 
loads the specified program into memory using the address space of the newly created 
process. (When a GUI interface is used, double-clicking on the icon associated with the 
executable file invokes the loader using a similar mechanism.)



Thank you for your 
attention!


	Slide 1: Lecture 2
	Slide 2: Introduction
	Slide 3
	Slide 4: User interface
	Slide 5: Program execution
	Slide 6: I/O operations
	Slide 7: File-system manipulation
	Slide 8: Communications
	Slide 9: Error detection
	Slide 10: Resource allocation
	Slide 11: Logging
	Slide 12: Protection and security
	Slide 13
	Slide 14: User and Operating-System Interface
	Slide 15
	Slide 16
	Slide 17: Graphical User Interface
	Slide 18: Touch-Screen Interface
	Slide 19
	Slide 20
	Slide 21
	Slide 22: System Calls 
	Slide 23: Example
	Slide 24
	Slide 25: Application Programming Interface
	Slide 26: run-time environment (RTE)
	Slide 27: Types of System Calls
	Slide 28
	Slide 29
	Slide 30: Communication
	Slide 31: shared-memory model
	Slide 32: Protection
	Slide 33: Linkers and Loaders0
	Slide 34
	Slide 35: Thank you for your attention!

